(This question continues on the following page)

(Question B1 continued)

Part	2 Radioactivity and nuclear energy levels
(a)	Define the following terms.

	(i)	Radioactive half-life $(T_{\frac{1}{2}})$	[1]
	(ii)	Decay constant (λ)	[1]
(b)	Dedi	uce that the relationship between $T_{\frac{1}{2}}$ and λ is	[2]
		$\lambda T_{\frac{1}{2}} = \ln 2.$	
	• • •		

Turn over 8804-6502

Question B1, pa	rt 2 continued)
-----------------	-----------------

_	Thorium-227	(Th-227)	undergoes	α -decay	with a	half-life	of 18	days to	form	radium-223
((Ra-223). A sa	ample of	Γh-227 has	an initial	activity	y of $3.2\times$	$10^5\mathrm{Bq}$			

(c)	Dete	ermine, the activity of the remaining thorium after 50 days.	[2]			
In th	ne deca	ay of a Th-227 nucleus, a γ -ray photon is also emitted.				
(d)	(i)	Use the following data to deduce that the energy of the γ -ray photon is 0.667 MeV.				
		mass of Th-227 nucleus $= 227.0278 \text{ u}$				
		mass of Ra-223 nucleus $= 223.0186 \text{ u}$				
		mass of helium nucleus = 4.0026 u				
		energy of α -particle emitted = 5.481 MeV unified atomic mass unit (u) = 931.5 MeV c ⁻²				
		You may assume that the Th-227 nucleus is stationary before decay and that the Ra-223 nucleus has negligible kinetic energy.				
	(ii)	Calculate the frequency of the γ -ray photon.	[3]			

(This question continues on the following page)

(Question B1, part 2 continued)

Although in the decay of a Th-227 nucleus, an α -particle and a γ -ray photon are emitted, they may have different energies to those in (d) (i). However, all the α -particles emitted in the decay of Th-227 have discrete energies as do the associated γ -ray photons. This provides evidence for the existence of nuclear energy levels. The diagram below represents some of the energy levels of a nucleus of Ra-223 relative to Th-227.

- (e) On the diagram above label
 - (i) the arrows associated with a-particles (with the letter A).
 - (ii) the arrows associated with γ -ray photons (with the letter G). [1]
 - (iii) the ground state energy level of Ra-223 (with the letter R). [1]
- (f) Use data from (d), to suggest a value for the energy difference between the ground states of a nucleus of Th-227 and the ground state of a nucleus of Ra-223. [1]

8804-6502 Turn over